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The determination of electron densities and electron velocity distribution functions (EVDF’s) from
the current-voltage (I-V') characteristics in the electron repelling region is considered for cylindrical,
spherical, one-sided planar, and two-sided planar Langmuir probes. Previous treatments of axisym-
metric plasmas, in which the EVDF is expressed as a series in Legendre polynomials, are extended
and generalized, including full consideration of orbital motion in the arbitrary sheath thickness case
for cylindrical probes. An alternative formulation focusing on the first derivative of the I-V data,
which is normally more noise immune than the usually used second derivative, is given for one-sided
planar probes. A concept of an isotropic EVDF that would give the same probe current as the actual
anisotropic one is defined for various probe geometries and used to clarify the physical meaning of
parameters extracted from measurements with a single probe orientation. The theory is extended to
a completely anisotropic plasma using an expansion of the EVDF in a series of spherical harmonic
functions. The geometrical relationships between the various coordinate systems are expressed in
terms of the group multiplication rule for the irreducible representations of the three-dimensional
rotation group. A method for extracting the complete three-variable EVDF from probe I-V data
at a sufficient number of probe orientations is given. The necessary Volterra integral equations are
shown to be no more difficult than those arising in the axisymmetric case. Finally, it is shown that
the original method of Langmuir or Druyvesteyn for finding electron densities by integrating the
second derivative of the I-V characteristic is much more robust towards anisotropy of the plasma
than previously realized. Specifically, the usual method, applied exactly as if the plasma were indeed
isotropic, should with a single arbitrary orientation of a cylindrical or two-sided planar probe (or
with a spherical probe) give the exact electron density, even in a completely anisotropic plasma, and
this result is shown to be independent of the ratio of sheath radius to probe radius for cylindrical or
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spherical probes.
PACS number(s): 52.70.Nc, 52.70.Ds, 52.20.Dq

I. INTRODUCTION

Although the original development of the theory of
electron collection by Langmuir probes assumed that
the velocity distribution of electrons (and of ions) was
isotropic at the spatial point being probed, in many in-
stances of practical interest there exists a moderate or
even large degree of anisotropy in the electron velocity
space. The ubiquitous occurrence (in low temperature
plasmas) of elastic collisions with heavy gas molecules,
which tend to randomize the direction of electron motion
in just one or two collisions at low energy, provides a very
strong tendency towards isotropy, and it is this which has
made the original simplifying assumption so useful and
widely applied. The method of obtaining the electron en-
ergy distribution function (EEDF) in an isotropic plasma
from the second derivative of the probe characteristic in
the electron repelling region, and in turn of finding the
electron density from integrating the EEDF over all ener-
gies, has become a standard tool of experimental plasma
physics, since it was proposed by Mott-Smith and Lang-
muir [1] and by Druyvesteyn [2]. In important regions
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of plasmas near electrodes, or double layers, or electron
beam sources, etc., there may, however, be significant de-
grees of plasma anisotropy, and it is important to mea-
sure these anisotropic electron velocity distribution func-
tions (EVDEF’s) accurately in order to characterize the
operation of plasma sources, to understand the flow of
electrons and of energy in the plasma, and to check nu-
merical modeling of plasma electron dynamics. Langmuir
probes can still do this, as long as data are acquired at
several orientations of the probe. As discussed in the
next paragraph several papers in the last decade have
demonstrated this clearly in the case of an axisymmet-
ric plasma. The present paper extends that treatment
in several ways and also provides the basis for obtaining
the EVDF in the case where the latter has no symmetry.
Many important plasma generation configurations are ei-
ther not cylindrically symmetrical at all or have their
approximate symmetry broken by side ports or other ir-
regularities. Even when a plasma device has cylindrical
symmetry, the axisymmetric EVDF assumption is only
rigorously valid at on-axis points.

The essentials of the theory for electron collection
in axisymmetric plasmas were given by Fedorov [3], as
will be described in more detail below. His treatment
included one- and two-sided planar probes, cylindrical
probes, and spherical probes but used a thin sheath ap-
proximation throughout. Mezentsev et al. [4] applied the
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theory by using two orientations of a cylindrical probe
in the cathode region of a helium arc to find the first
two even-order coefficients (£ = 0 and 2) in the EVDF
expansion. Mezentsev and Mustafaev [5] extended this
work to find the first odd term (£ = 1) by using relation-
ships derived from the Boltzmann equation. Mezentsev
et al. [6] used three orientations of a one-sided planar
probe to find three coefficient functions (¢ = 0 — 2) and
used the Boltzmann equation relationships to find elec-
tron collision cross sections from these. Additional pa-
pers by Mezentsev and co-workers [7-9] describe related
further experimental work. Fedorov and Mezentsev [10]
first gave a general expression for the resolvents in the
Volterra integral equations (see below) and briefly dis-
cussed the issue of singularities in these equations. Lap-
shin and Mustafaev [11] discussed numerical methods
and error analysis associated with the implementation of
Fedorov’s method. Klagge and Lunk [12] compared re-
sults for a one-sided planar probe using three probe orien-
tations and using five orientations, and for each of these
cases they gave convenient explicit forms of the necessary
equations. Klagge [13] used three orientations of a one-
sided planar probe to measure anisotropy in a 27 MHz
rf discharge. Mal’kov [14] has proposed using a method,
slightly different from Fedorov’s original approach, where
instead of using a system of linear equations one inte-
grates current or its derivatives over probe orientation
angle with a Legendre polynomial weight. Similar possi-
bilities were also mentioned in Refs. [10,11]. Reference
[14] also described the possibility for planar probes of
focusing on first derivatives of the current rather than
second, as does the present work. Kalinin and Mal’kov
[15] further discuss the method of Ref. [14] and also
apply it experimentally. Mal’kov [16] considers the col-
lection of electrons by a cylindrical probe without using
a thin sheath approximation and obtains explicit results
for the coefficients of Py(cos8) and P,(cos ). In Ref. [17]
numerical modeling is used to examine the accuracy ob-
tainable in the application of Mal’kov’s approach [14] to
determining the EVDF in the presence of varying degrees
of anisotropy.

In the next section (II) of this paper we discuss general
concepts of electron collection in the retardation region
for planar and cylindrical probes in a plasma with no
assumed symmetry. For cylindrical probes and for two-
sided planar probes it is proven that the exact density
is obtained from Druyvesteyn’s usual method [2] at any
single orientation of the probe. In the process certain
isotropic distribution functions are defined (by the re-
quirement that they produce the same probe current as
the actual anisotropic EVDF), and these are also used
to illuminate the meaning of the effective temperatures
that are obtained from the Druyvesteyn method for each
probe type. In Sec. III the axisymmetric case is de-
scribed and treated by using the same Legendre polyno-
mial expansion of the EVDF that Fedorov did [3]. For
planar probes the use of the first derivative of the probe
characteristic is considered as an alternative to Fedorov’s
second derivative based approach. The Volterra integral
equation solutions, which are also needed for the nonax-
isymmetric case, are discussed in this section. For the

cylindrical probe the derivation makes no assumption of
a thin sheath, and the final result, though stated in a
somewhat different form from Fedorov’s, is shown to be
equivalent to it. In Sec. IV a form of the theory appro-
priate when there is no axis of symmetry is developed.
Here the EVDF is expanded into a series of spherical
harmonic functions, and it is shown that by solving a set
of linear equations for one-sided planar probes involving
first or second derivatives of probe characteristics at a
sufficient set of probe orientations, followed by numerical
inversion of the resulting Volterra integral equations, the
full EVDF can be obtained. A version of the theory in-
volving only real functions instead of spherical harmonics
is also provided. For two-sided planar probes and cylin-
drical probes it again follows that the density is correctly
obtained even from data at a single probe orientation.
The spherical probe case is also treated using the spher-
ical harmonic expansion of EVDF. In Sec. V there is a
brief discussion of the results of the previous sections and
of ways of applying them.

Certain simplifying assumptions are made throughout
this paper but are only mentioned in this paragraph. It is
assumed that all electrons incident on the probe are col-
lected, that there is no secondary electron emission, and
that there are no electron collisions in the sheath. Edge
effects at the end of a cylindrical probe or around the
perimeter of planar probes are neglected, and the surface
of the sheath in front of a planar probe is taken to be
perfectly planar too. Use of a guard ring arrangement
[18] is suggested as a way of making the latter assump-
tion more realistic. Perturbations of the plasma by either
the probe or the probe holder are neglected. We assume
that the length scale over which the EVDF changes ap-
preciably is long compared to the physical dimensions of
the probe. Of course actual measurements are subject
to experimental errors and to noise. Thus in the follow-
ing sections, when we say a certain result is exact, we
mean exact within the framework of all these assump-
tions, or in other words that it is just as exact as the
corresponding result for an isotropic EVDF. Everywhere
in this paper I is taken to mean the electron current,
not the total current. If the positive ion contribution to
the total current or its derivatives cannot be neglected in
comparison to that of the electrons in the circumstances
of any given experiment, then corrections for it must be
made to the observed total probe current before apply-
ing the equations of this paper. Our sign convention for
I is the usual one, where I > 0 corresponds to positive
current flowing from the probe into the plasma, i.e., to
collected electrons.

II. GENERAL RESULTS
FOR THE UNEXPANDED EVDF

A. One-sided planar probe
We begin with the electron velocity distribution func-

tion expressed in rectangular coordinates in velocity
space and normalized to the electron density:
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/ dvz/ d'uy/ dv, f(vg,vy,v;) = ne. (1)

Throughout, f, expressed in whatever variables, will be
taken to represent the same numerical value at a given
point in velocity space. Consider a one-sided planar
probe with the coordinate system oriented so that the
positive v, axis in the velocity space at the sheath edge
points inward directly normal to the probe surface. We
let V, represent the probe bias potential and V, the
sheath-edge potential (the plasma potential), which we
take as the zero of potential (V, — V, = V,). For the
retardation region treated in this paper V, < 0. The
collected probe current is

(V) = Ape/ _dvz/ dvm/ duy v,
[ - -
Xf(v:tavgnvz)y (2)

where A, is the area of the probe (taken as equal to the
sheath area). Now define the z projected EVDF,

H(v,) = /oo dvg /_o<> dvy f(ve,vy,v:), (3)

and obtain
I(Vp) = Ape /\/W v, H(v,)dv,. (4)

For the first derivative of the probe trace it follows that

(=)

so that H(v,) for v, > 0 can be obtained directly from
the first derivative. On the other hand, the one-sided
repelling probe in this single orientation is blind to f or
H in the other half of velocity space (v, < 0). We further
define the function f,l(v) to mean the isotropic EVDF
that yields the same H(v,) for v, > 0 that the actual f
does, i.e., so that

/ dvzf dvyle (,/'v';’ + v2 +vf) = H(v,)

for v, > 0. (6)

dI e?
dv, m

In cylindrical coordinates v, , ¢, v, with v defined by v? =
v? + v? we can write

27 oo
)= [ do [ fwrg )i
27 oo
= d 2)d 7
/0 6 /|le vf(v,8,v.) dv (1)
and for v, > 0
H(v,) =2n /00 v fz1(v)dv. (8)

Substituting the latter expression into Eq. (5) and differ-
entiating again gives

dI e [ -
d—‘/;’ = ZWAPE / v 'Ule(’l)) dv
and
d?I e3 - —2eV; )
;1—‘}3 = 27I'Ap7—n—5f21 ( ™ p) . (9)

Thus le, if it exists, will be what we obtain by applying
the usual Druyvesteyn second derivative method as if the
plasma were isotropic.

If we change variable to v = /—2eV,/m (the probe
bias expressed in velocity units) we can convert the last
part of Eq. (9) to the form

z 1 1d1d )
=— - — - —1, 10
fa(v) 2rApe v dv v dv (10)
but using Eq. (4) this becomes
= 11d1d e )
falv) = o de v dv /1: v, H(v,)dv,. (11)

Equation (11) shows by construction that f,; always
exists, because H(v,) always exists, and substitut-
ing Eq. (11) into Eq. (8) immediately leads to self-
consistency. If we now turn the probe around 180°, we
can obtain H(v,) for v, < 0 and define an analogous
function fzg(v). We could also select other orientations
and define H(v,), f;l, etc., in the obvious way. For the
electron density and the average value of a property de-
pending on v, we have

Ne = / H(v,)dv,
and

1 oo

(T(v,)) = —/ H(v,)T (v,)dv,. (12)
Me J -0

In the interesting symmetrical case, where H is an even

function, e.g., a plasma symmetry axis lying in the plane

of the probe, and T(v,) is an even property, we have

le = fz2 = fz» and

(T(v2)) = — /000 T (vz) /co vf,(v) dvdv,

am [ [TV ‘ z
== /0 [/0 T(Uz)dvz} f=(v) vdv. (13)

For the z contribution to the kinetic energy, mvZ/2, we
obtain as expected from this formula one-third of the
isotropic result:

mvZ\ 14w [T mo®
< > ——/0 sz(v) v2dv. (14)

2 _Ene

B. Two-sided planar probe

Letting A, equal the combined area of both sides of the
probe and combining the contributions of two one-sided
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probes gives

I= E / v, H(v,)dv,
<P

2 —2eV,
Ve
— A2pe v, H(v,)dv,
and
ar A,,e2 1 —2eV, —2eV,
v, m 2 [H (V m tH| - m ’

(15)

which shows that only [H (v,) + H(—v.)]/2 can be found
from two-sided planar probe data, not H(v,) itself. Sim-
ilarly we can write analogously to Eq. (11)

fzz(v) = 11! —d— 1 d /—v v, H(v,)dv, (16)

—0oo

and obtain for the second derivative

d’I e 1]; —2eV,
vy = ey [fﬂ (v Tm
z [—2eV,
+fz2 ( p )
m

Thus application of the usual Druyvesteyn method de-
termines the average function (f,1 + f22)/2 = fz,avg in
this case. If we proceeded as if the plasma were isotropic,
we would integrate this average function over the entire
velocity space to find the electron density:

(17)

ng"lc = 47r/ f.z,m,g(v)vzdv. (18)
0

If we substitute Egs. (11) and (16) and integrate by parts,
this reduces to

ngele — / H(v,)dv, = nire, (19)

which proves the following statement. If the electron
density in an arbitrarily anisotropic plasma is computed
from the integration of the second derivative of the I-
V curve of a two-sided planar probe, according to the
usual Druyvesteyn prescription for the isotropic case, the
exact result will be obtained for any orientation of the
probe. Only for even properties T(v,) can the average
be deduced from two-sided probe data, but in this case
an exact calculation is possible:

@y = 2 [T HEEEC ) r )0, o)

which leads to analogs of Egs. (13) and (14) with f. re-
placed by f; aug-

C. Cylindrical probe

In this section we consider a cylindrical probe in a com-
pletely anisotropic plasma, and since there is no preferred
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direction we lose no generality by assuming that the
probe axis is the polar axis (2) for expressing the EVDF
in cylindrical coordinates in velocity space (v.,®,v.),
where ¢ is the azimuthal angle between the electron ve-
locity vector and an z axis fixed in the plasma containing
vessel. We define a projection of the EVDF (actually an
average over angle) onto the perpendicular velocity by

27 oo
Glvy) = %/ﬂ dq_S/: F(vr,$,v.)dv,. (21)

In the special case of an axisymmetric plasma with the
probe aligned to the symmetry axis this would reduce to

G(vl) = ‘/_o:o f(UL)Uz)dvz (22)

(axisymmetric, aligned). We let r, represent the radius
of the probe, L its length, and r, the arbitrary radius
of the sheath. The expression for the collected probe
current involves three velocity space integrations and two
more over the surface of the probe, of which one is trivial,
multiplication by the length of the probe. Let ¢ be the
azimuthal angle from the above mentioned fixed z axis
to a small surface element on the probe, and let ¢ be
the cylindrical angle from the outward normal to that
surface element to the electron velocity vector, so that
é = ¢+ ¢ (Fig. 1). Following Langmuir’s ideas of orbital
motion, in which conservation of total energy and of the
z component of angular momentum are used to ascertain
which electrons starting at the sheath surface reach the
probe surface to be collected, we obtain the following
limits:

vy > (~2eVp/m)?

and
m—¢* < p<m+e, (23)
where
r
FIG. 1. The azimuthal angles are seen looking down the

axis of the cylindrical probe, when the latter is also taken as
the polar axis of the vessel-fixed cylindrical coordinate system
for expressing the EVDF. The velocity vector is not generally
in the plane of the paper; the angles shown are those to its
projection in that plane.
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“1Te [y 2eV,
Ts mu?’

¢* = sin

The collected current can then be written as
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2r oo T+ oo B
I= —ersL/(; qu/ v, vidv, /7:—(»- d(;b/~OC dv, f(vi,¢,v.)vy cos . (24)

The ¢ integral should be done first, and since it only
depends on f, which is periodic in angle, the result is
independent of ¢:

2 27
[ ddswrer b= [T dbrondo) ()
0
The ¢ integral no longer depends on the EVDF and can
be done explicitly using Eq. (23), after which the sheath
radius r, cancels out. Using the definition in Eq. (21)
with a different dummy variable, and remembering that
A, = 27mr, L we come to

(26)

This equation shows that the probe current only depends
on the distribution of perpendicular velocities, and con-
versely that only G(v,) and quantities directly depen-
dent upon it can be determined from the retarding Lang-
muir probe data. For the electron density and for the
average of a property S(v_ ) we have

Ne = ﬁelocityf = 271’[; 'U_LG(U_L)d’UL

space

and

<S('UJ_)> = ?21—”/ ’U_\_G(’UJ_)S(’U_L)d’UL. (27)
e JO

Following along lines similar to the above treatment of
planar probes we desire a function f(v) that will be
an isotropic velocity distribution that yields the same
G(v.), and thus the same probe current, as the actual
anisotropic EVDF (f). If such a function f exists, then it
is what the usual Druyvesteyn second derivative method
should find (since it is isotropic) and integration of it
should produce the exact electron density [because it
yields the same G(vy.) as f does]. In fact we will de-
fine f by

= [—2eV, m2  d?I
= —_— 28
f ( m ) 2mAped dez’ (28)

where [ is given by Eq. (26). Thus for any G(v.) f(v) ex-
ists by construction. Defining v as we did before Eq. (10)
and simplifying Eq. (28) with Eq. (26) substituted into
it, we get

f(v)_ll—d—ld/ le ~Uz vidvg.
(29)

If we wish to calculate the electron density as we would
for any other isotropic EVDF we would use

calc:4 002_ dv. 30
ne w[) v¥f(v)dv (30)

Substituting Eq. (29) into Eq. (30), integrating by parts,
and differentiating yields

oo (e S} 1
ngale =4 / L/ UJ_G('U_L) T dv, | dv, (31)
Jo v -v

vy

and then exchanging the order of integration and doing
the v integral explicitly gives

o0
neale = 27r/ v, G(vy)dv, = ni™e, (32)
0

according to Eq. (27). This has proven the following
statement. In an arbitrarily anisotropic plasma with a
retarding cylindrical probe at any orientation the usual
method of integrating the second derivative of the probe
current, applied just as if the plasma were isotropic, will
give the exact electron density. Since f is isotropic If=
f(y/v2 +v?)], we can use Eq. (22) to calculate G(v.),
and with the variable change v = y/v% + v2 it becomes

G 2/‘ f( vdv
(vi) = V) ——.
1) g =

Substituting Eq. (29) (with dummy variable 7 ) into this
yields an identity in G, which after one differentiation by
v and integration by parts in 7; becomes

(33)

L4
/—“_:-U_,L dv
x/ G'(51)4/02 —v2do dv.  (34)

After a further differentiation by v, exchange of the order
of integration, and use of the integral

v vdv T
= -, 35
Li Vo2 =02 f52 —v2 2 (35)
followed by use of the fundamental theorem of calculus,
the right hand side reduces to G(v, ), proving the iden-

vl)—‘
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tity. This confirms that f does indeed lead to the same
G(v.) as f does.

A property average (S(vy)) can also be expressed in
terms of the function f using Eq. (33) inserted into
Eq. (27), which after changing the order of integration
becomes

(S(vy)) = %E /:, i [ L)

| T

vy dv,.

(36)

In the case of the transverse kinetic energy (mv2 /2) this
reduces after some calculation to

mvi\  24r [P mo?

2 3 Ne _/0 2
or % of the isotropic result. For a Maxwell-Boltzmann
distribution this is of course % (g kT.) = kT.. Thus
the effective electron temperature calculated from the
cylindrical probe characteristic, as if the plasma were

isotropic, is actually in an anisotropic plasma the effec-
tive transverse temperature

m ’U2
kTeJ_ effective = < 2 = > (38)

For the mean transverse speed we would obtain in the
same way

(vi) =

fv)vidv 37)

1r41r

- — vf(v) vidv (39)
or w/4 times the mean speed in the isotropic case. For a
Maxwellian EVDF this reduces to (v, ) = (7kT./2m)"/2.
In the case of a planar probe the first derivative of
the probe current gave the projected EVDF H(v,) di-
rectly [Eq. (5)], but in the cylindrical probe case the first
derivative is only expressible as an integral over G(v_),

e2 [2 [ v, dv
_2Ap;,/;/ G(M)_—;2 _va_ (40)
v \VA R

To obtain G(v,) from actual probe data one must dif-
ferentiate again to get f [Eq. (28)] and then integrate
according to Eq. (33).

Finally we consider the relationships between the cylin-
drical probe results and the one-sided planar probe re-
sults in the important special case of an axisymmetric
plasma, whose symmetry axis (z) is coincident with the
cylindrical probe axis and lies in the plane of the planar
probe. Then we have H(v,) = H(—v.) by symmetry
(w1th the plane of the probe being the yz plane) and
le = f,z = fz, and intuitively we expect that f,_. = f,
since both the probes are sensitive to the same transverse
velocity components in this case. We can show that this
is indeed the case [remembering f = f(v,,v.)] starting
from

H(v,):/_:dvy/;:dvzf

= /;°° G(vy)dvy, (41)

2227

where we have used Eq. (22). Now we use
Eq. (33) and the evenness of G(vy) with respect to

vy (vl—v + 2, dvy—vldvl/\/vL—vz) to obtain

(v) vdv ] dv, (42)

H('v,,)=4/0°°|: mm

After changing variables from v, to v,, exchanging the
order of integration, and using the definite integral in
Eq. (35) again, we find that

H(v,) = 27 / ” of(v) dv. (43)

We also have the = analog of Eq. (8), which looks exactly
the same except that it contains f, instead of f, and dif-
ferentiating both of these with respect to v, immediately
proves f = f,.

III. EXPANSIONS OF THE EVDF
IN THE AXISYMMETRIC CASE

A. One-sided planar probe

Fedorov’s treatment [3] of the one-sided planar probe
begins by converting Eq. (2) to spherical coordinates in
velocity space (v, 61, ¢1) with the polar axis along the in-
ward normal to the probe surface, and further converting
the speed to an energy variable ¢ = mv2/2 with the probe
bias represented as €* = —eV,,. For the probe current this

gives
2Ape / /

x / dy £ (e, 01, 61), (44)
0

sm 01 cos 6,d6,

and for the first and second derivative he obtains (in our

notation)
2 *
dg: f (e,cos-l ,/f—,dn) (45)
0 €

de

and

d21 Ape3

d‘/pZ m2

oo 27 ' *
—/. de/o do, é%f (6,008_1 \/%#’1)]-

(46)

27
[ A f(€*,0,01) do

Next Fedorov expands the EVDF as a series in Legendre
polynomials

= Z fe(€)Py(cos ) (47)

=0

f(e0)

and uses the addition theorem
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Py(cos8) = Py(cos ;) Py(cosby)
~ (L—m)!
+2mzz:1 mP["(cos&)P{”(cosBO)

x cosm(¢p1 — o), (48)

where 6y, ¢o are the spherical angles of the probe in-
ward normal in the symmetry axis system of the plasma.
When Egs. (47) and (48) are substituted into Eq. (46)
the m # 0 terms go away in the ¢; integration, and the
final result is

d?I Ae® &S
73 (60) = 2725 > Pi(cos6o) Fu(e*), (49)
p £=0
where

Fg(e*) — fl(f*) _ /‘.°° defl(e) 82* P, (@) . (50)

The basic idea, which has been elaborated and applied
in several later papers, is to truncate the expansion at
some finite ¢, to obtain probe data at £+ 1 (often evenly
spaced) values of 6y, and to solve the £ + 1 equations of
type Eq. (49) for Fy through F,. Then Eq. (50) for these
£’s must be solved for f;(€*) in terms of Fy(e*).

Volterra integral equations of the second kind are of
the form

(e) = (@) + [ K(e.ute) dr, (51)

where z(z) and the kernel K(z,t) are assumed to be
known and y is the unknown function. Volterra [19] has
given the solution as

y(z) = z(z) + /Om S(a, 6)z(t) dt, (52)

where the resolvent S(x,t) is related to the kernel by
Volterra’s principle of reciprocity

K(m,t)+S(m,t):/ S(z, &)K (€, t) dE. (53)

Fedorov [3] and other authors have pointed out that
Eq. (50) is essentially a Volterra equation of the second
kind. In fact it can be converted to the exact canonical
form [Eq. (51)] by the variable transformation z = 1/¢*
and t = 1/e. For £ = 1 and 2 the resolvent S(z,t) may
be found conveniently by Volterra’s method of iterative
kernels [19]. For £ = 3 and 4 it is easier to substitute a
trial solution of the form

S(z,t) = axPt? + bz™t" (54)

into Eq. (53) and solve the resulting equations for the
exponents and then the coefficients. Klagge and Lunk
[12] have given explicit results for the resolvents up to
£ = 4. By inspection of these one can guess that the

general solution of Eq. (50) is
1 €
Lr(/2). e

fe(€") = Fy(e*) + /‘00 de Fy(e)

This can be proved in general by substituting Eq. (55)
into Eq. (50) and changing the order of integration. Af-
ter some more manipulations this leads to an equivalent
identity

1 _, /[ € 1, €*
= (V) ‘ﬁ“( ?)
< e\, [ [€\ ds
:/6‘ j% (\/;) P (\/;> sz (56)

*—1/2 b = €~1/2
’ - ’

or with the variable changes a = ¢ z =

s712 to

i (5) - (o) = [ RC)R(5) e e

This latter identity can be proved by mathematical in-
duction on ¢, some integrations by parts, and use of Le-
gendre’s differential equation and the recurrence formula

P (@) — 2Pu(z) = (n + 1) Pa(a). (58)

n

Reference [10] has given a general solution for Eq. (50)
that is equivalent to Eq. (55) but expressed in a different
way.

An alternative approach for the planar probe in an ax-
isymmetric plasma can be based on the projected EVDF
H(vy,), where v, is the inward normal component of elec-
tron velocity at an arbitrary orientation of the probe, and
the first derivative of the probe current. Intuitively if the
projections H(v,) can be obtained in enough different
directions, then the underlying full EVDF f should be
derivable from them. Combining Egs. (5) and (45) gives
(e = mv?/2 and €* = mv2/2)

oo 2w [ x A
H(e*)_—_%/ de/ doi f (e,cos*1 \/%,qﬁ).
€* 0 2

Substituting Eqgs. (47) and (48) and doing the ¢, integral
then gives

H(e*) = 27;7:_ ZPI(Coseo) /oo dEf[(E)P[ < .6:) S
£=0 € €

(60)

or expressed in the velocity variables (with v, =

V=Y > 0)

H(vn)=27rZP¢(cos€0)/ vfl(v)Pl(%") dv.  (61)
£=0 YUn

Then we define (v, > 0)

Qe(vn) = /:x vfe(v) Py (vl—") dv

SO
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(ao) =2 Ap— Z Py(cos bo) Q¢(vy) (62)

l—O

and solve a truncated set of linear equations [Eq. (62)]
involving first derivatives of probe characteristics at
£ + 1 orientations 6 to find numerically Qo(v,) through
Q¢(vn). If in Eq. (62) we make the variable changes
t=1/v and z = 1/v, we get

Qu(z) = / —P,( )fz(t)dt (63)

which is an example of a Volterra equation of the first
kind [19], namely,

2(z) = /0 “ K (s, t)y(2) dt. (64)

The latter is converted to a Volterra equation of the sec-
ond kind by Volterra’s method of differentiation [19] [re-
quiring K (z,z) # 0]

Y@ _ oo [ [£KGEY
ks = @)+ | [ K(m,m)]y(‘)‘“- (65)

Applying this procedure to Eq. (63) and solving the re-
sulting equations for £ = 0 — 4 by the techniques already
referred to (and then converting from z and ¢ back to v,
and v) we guess that the general solution to the first part
of Eq. (62) is

futon) = - 22) 5 " (L) Quoyan, (o0

Un n

or integrating by parts
Q)
Un

1 oo
1"

Equation (66) can be proven by differentiating the first
line of Eq. (62) once and then substituting Eq. (66) into
it. After exchanging the order of integration in the dou-
ble integral term, setting the coefficient of Q}(v) in the
integral equal to zero, and making the variable changes
a=v;b=v"1 and z = 57!, we come to the identity
Eq. (57) again. After finding the first few Q,’s numeri-
cally from probe data as described following Eq. (62), we
determine the corresponding coefficient functions in the
Legendre polynomical expansion of the EVDF by per-
forming the numerical integration and differentiation in
Eq. (67). Inspection of the latter shows that to find the
EVDF we must eventually use numerical second deriva-
tives of the probe current, if only in the first term. There
may still be advantages to this method in terms of noise
immunity in that the critical stage of solving the linear
equations [Eq. (61)] to separate the contributions of the
different orders £ (and seeing where the expansion can be
safely truncated) is done with the more noise free numer-
ical first derivatives.

Multiplying Eq. (47) (with velocity as a variable rather

£(£+1) Qe(vn)
2 v2

(—) Qu(v) dv. (67)

fe(vn) =

2229

than €) by Py(cos6)sin6, integrating, and using the or-
thogonality of the Legendre polynomials we obtain

fe(v) = Zt—+1/ Py(cos0) f (v, 0) sin(6) db (68)
and in particular
1 (" .
folo) =3 [ £(0.6)sin(6) ds. (69)
Thus
ne:ﬁﬁ;ﬁéy f =27r/0 'u%iu/o sin(6)d0 f (v, 6)
= T d 70
41r/0 v fo(v) dv, (70)

so that the electron density is completely determined by
the isotropic term in the EVDF expansion.

B. Two-sided planar probes

As pointed out by Fedorov [3], for a two-sided probe
the two sides correspond in Eq. (49) to 6y and 7 — 6,,
and since Py[cos(m — )] = (—1)*Py(cosby), the odd-
order terms cancel out. If A, is now understood as the
total area of both sides of the probe, the second derivative
becomes

E3 Puyleosto)Pyy(e). (1)

=0

de (00) = 27|'A

Based on our discussion in Sec. II we should expect the
integral of the second derivative method to give the true
electron density, i.e.,

calc m d I 2
=4
Tt ”/0 2rAyed dV2 Undvn

=A4r Z P,;(cosby) / Fi(€*) v2dv,
i=0 0

2 — oo
=Y Pulcosto) [ Fy(e)er /e (72
m < 0

=0

should reduce to the true n.. Based on Eq. (70) we
can see that this will certainly happen if the integral in
Eq. (72) vanishes for j # 0 [remembering that Fy(e*) =
fo(€*)]. Substituting Eq. (50) into the last form of this
integral, exchanging the order of integration, and inte-
grating by parts the integral becomes

/ sz(e*)eu/z de*
0

_ _;_/:o f25(€) /0e 716_:}923- (@) de*de. (73)

Making the variable change x = |/€*/e the inner integral
becomes
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/Oe _\;Z_:Pz,- (@) de* =2+/€ Al P;(x) dz .

=ﬁ[ﬁ%m&wa
=2/€8j0, (74)

[

plasma axis

as desired. The same argument would fail for a one-
sided planar probe, because the next to the last step in
Eq. (74) depends upon the evenness of Ppj(x). Terms
involving Fy;+1(e*) do not give vanishing integrals.

L

C. Cylindrical probes

In order to obtain results that are known to be valid for
any Debye length to probe radius ratio, we consider elec- probe axis
trons entering a sheath of arbitrary radius r, and subject
to collisionless orbital motion inside this sheath. At any
element of surface area on this sheath we choose a spher-
ical coordinate system in velocity space with a polar axis
parallel to the probe axis and with ¢ = 0 corresponding
to velocities pointing outward in a plane containing the
probe axis (Fig. 2). Combining conservation of energy
and of the z component of angular momentum with the  yhere
requirement that the electron trajectory reach the probe
surface leads to the following limits on the velocity space 0* — sin~1 —2eV,
coordinates: mv?

7T“¢‘S¢S7r+¢‘v

FIG. 2. Orientations of the probe axis, the plasma sym-
metry axis, and the velocity vector are shown in the case of
an axisymmetric plasma.

9* <9 <m— 6,

k]

and
where _
v > \/ 26Vp. (75)
P = sin~! Tp 1 26—VP m
Ts mv?sin?6’ The expression for the collected current is
2n 3 T—0" 5 n+¢” B
I= —e'r't,L/0 \/Th_v dv sin“(6)dé /"‘ . cos(¢p)dof(v,8). (76)

Here 0, ¢ are the polar angles of the electron velocity vector in our spherical coordinate system, ¢ is the angular
position of this surface element on the sheath boundary, referenced to the plane containing the probe axis and plasma
symmetry axis, and A will be the angle between the two latter axes (Fig. 2). Thus A, ¢ will also be the polar angles
of the plasma symmetry axis in our coordinate system, and the angle between the plasma symmetry axis and the
electron velocity vector (#) will obey an equation of the form of Eq. (48), giving Py(cosf) in terms of the pairs 8, ¢
and A, ¢. We begin by substituting that addition theorem into the Legendre polynomial expansion of f(v,#) and then
inserting that into Eq. (76). The é integral must be done first, and this eliminates all the m # 0 terms giving

I= —er,LZ'lriPt(cos A) /com v3dv /‘7'—9' sin®(8)d6 /H-d)‘ cos(@)dofe(v)Pe(cos 6). (77)
£=0 VR : ¢

The ¢ integral may now be done explicitly, after which r, cancels out, and we obtain

I= 2Ape§: Py(cos }) /\/—_ v fe(v)dv/ _8 sin 0,/1+ V Pt(cosg)dé? (78)

£=0

It can be seen that the odd ¢ terms give vanishing contributions to this current, because of the oddness of the 6
integrand about 6 = 7/2, and we define

feven(v,0) ZPZJ(COS A)P2j(cos ) f2;(v). (79)

7j=0
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For the special case of a probe aligned along the plasma axis (A = 0) this is just the even part of the EVDF. Now we

have
/2 2¢eV,
I= 4Ape/ =Ty / sme\/ mv; — €082 0 feven(v,0) db. (80)
Defining y = cos 6, a = [1 + ZeV},/(mvz)] 1/2, and € and €* as before, this can be written in the form
8A e
2 / / Feven(e,cos™1 y)/aZ — g dy de, (1)
and the first derivative by V, is
dI  4Az€? [® [ feven(€,cos7!y)
d‘/p = mz /‘ A —_— W dy de. (82)
Integrating by parts in the y integral yields
2 oo a d
;V—i = 4‘::’: /E‘ {%feveﬂ(e, cos™! a) — /(; sin™! (%) d—yfet,e,,(e,cos“1 y) dy} de. (83)
The second derivative after cancellation of two terms is
ity S T e (& L frenlercosty)dy b d (81)
d‘/pz - even ] " 2a2 \/———— d even | €y cos™ €.
Reinserting what feyen actually is [Eq. (79)] converts this to
PI | Ape® & o [Z F2(6)
d_sz =27 :12 ;::0 P,;(cos \) [sz(O)fzj(e ) + /E‘. 7rJa,2 / P2_1 = y2 de . (85)
|
In order to make extracting the EVDF from this a / ¢y du — 7 (2i)!a? (88)
tractable problem it is imperative to evaluate the integral o va%—y? Y 2(2441)2
over y, and indeed we have proven the following identity
in the Legendre polynomials: and
(25)!
3
1 * o ydy €* P;(0) = (=1) (29512 (89)
wate | P2V 75— = —P(0) 3 Pz: -1,
wa“e Jo Vva? —y? € . . . i ;
Inserting these into Eq. (86), expanding a?* = (1 —e€*/e)*

(86)

where a2 = 1 — €*/e. This may be checked explicitly for
the first few values of j. To deal with the general case
we write

i
=Y dy¥,

1=0

Py;(y)

with

i _ _ (=1)"9 (26 + 25)!
P2%(20) 1+ 5)(F — o)V

(87)

We also need

(27)(27 — 2)(25 — 4)(25 — 6)

in a binomial series, exchanging the order of summation,
and equating coefficients of €**/e'*! on both sides of the
equation, we come to an equivalent identity:

Z (=1)¥(2i + 25 + 2)!
£ 22002 + 1)KN(i — k)G + 1+ 1) — i — 1)!

(29)! (k +1)(25 + 2k + 2)!
22(jN22k +2)!G+ k+ D)!I(G — k- 1)1
(90)

= (-1

The meaning of this complicated equation is made more
clear by looking at the specific case j—k = 5; after getting
a common denominator it becomes

— 4(27)(27 — 2)(27 — 4)(43 — 7) + 6(24)(24 — 2) (45 — 7)(45 — 5)

—4(27)(45 —7)(45 - 5)(47 — 3) + (47 — 7)(45 — 5)(45 — 3)(47 — 1) = (=25 + 1)(—27 + 3)(—27 + 5)(—27 + 7).

(91)
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Other values of j — k are analogous with more or less terms and factors [always alternating signs, binomial coefficients,
and factors beginning at (2j),(4j — 1), and (—2j + 1) and incrementing by twos]. This follows from a more general

result like (with various number of terms)

z(z —a)(x — 2a) - 3yz(z —a) + 3y(y+ a)z —y(y + a)(y + 2a) = (z — y)(z —y — a)(z — y — 2a), (92)

which is proved by mathematical induction on the num-
ber of terms.
We can now simplify Eq. (85) by using Eq. (86)

d?I Ayed
vz (A) =2n—2

[ o]

2 D Paj(cos A) Py;(0) Fa (€"), (93)
7=0

where Fy;(e*) is the same as in Eq. (50) with £ — 2j. The
inversion of the Volterra integral equation of the second
kind proceeds exactly as already discussed in Sec. IITA.
Again the first several F3; functions are found by solving
a system of linear equations [Eq. (93)] with numerical
second derivatives at the appropriate number of probe
orientations (A). The coefficient matrix differs from that
for a two-sided planar probe only by the presence of the
extra factor of P,;(0) [see Eq. (89)].

Fedorov [3] has given an expression for the second
derivative derived in the thin sheath approximation
Ap < rp, which differs from Eq. (93) (besides trivial
notation changes) by the substitution

P,;(0)Pzj(cos A) = 7-1‘_/ P,;(sinfsin ) df. (94)
0

The identity Eq. (94) can be proven by the same methods
used above to prove Eq. (86), to which it can be shown
to be equivalent after some manipulation.

The discussion of the electron density in the preceding
subsection on two-sided planar probes can be taken over
almost unchanged to the cylindrical probe case. When
Eq. (93) is substituted into the first line of Eq. (72),
all the ¢ # 0 terms again vanish, and the remain-
ing extra factor of Py(0) is just unity. Again we con-
clude that the calculation of the electron density in the
anisotropic plasma, carried out exactly as if the plasma
were isotropic, yields the exact result for a cylindrical
probe. Finally we point out that the two isotropic func-
tions fo(v) and f(v), both of which when integrated
give the exact electron density [Egs. (30) and (32) and
Eq. (70)], are in general quite different. This can be seen
clearly by consideration of a shifted Maxwell-Boltzmann
distribution (z is the probe axis)

m

Si V2 v+ (0 = )] (95)

f o< exp [—

where the drift velocity is large compared to the thermal
velocity. Our function f would be the same as if vy were
0, whereas f, would be shifted to a spherical shell of
radius vq in velocity space.

IV. A PLASMA
WITH NO VELOCITY SPACE SYMMETRY

A. One-sided planar probe

In this section we will develop a generalized theory ap-
plicable to an EVDF with no particular symmetry. The
EVDF in this case can be expanded in a series of spher-
ical harmonic functions

oo

+£
F0,0,8) =3 Y fem(v)Yem(6,9). (96)

£=0 m=—/¢

Since f(v,0,¢) is always real, the coeflicient functions
fem(v) must be complex. Consider three Cartesian coor-
dinate systems in velocity space: (I) a system (X,Y, Z)
parallel to a similar set in ordinary space fixed in the
plasma containment vessel, so that the coordinates of
the electron velocity vector are (vx,vy,vz), (II) a sys-
tem (z,y,z) parallel to a configuration space set with
the z axis normal to the probe plane (pointing inward)
and z,y fixed somehow in the plane of the sheath sur-
face, (vz, vy, v;) being the electron velocity components,
and (III) a set (z',y',z’) such that 2’ is along the veloc-
ity vector of the electron at the sheath boundary. The
orientation of ' and y' is arbitrary, but some definite se-
lection should be imagined at first. There are then three
coordinate transformations R, Ry, and R; and their cor-
responding sets of Euler angles that describe rotations
from one of these systems to another as follows:

R(¢,0,x) : (I) — (III),
Ro(¢o, 00, x0) : (I) — (II), (97)
Ry (#1,61,x1) = (II) — (II).

Thus (60, ¢) are the spherical coordinate angles of the ve-
locity vector in the vessel-fixed system, (6o, ¢o) those of
the probe normal vector in the same system, and (6;, ¢1)
those of the velocity vector in the system fixed on the
probe. These transformations obey the multiplication
law for group elements in the three-dimensional rotation

group R(3).
R(¢707X) = RO((bOa 007 XO)Rl(d)l,elaXl)' (98)

Note that the first applied element is on the left in the
right hand side of Eq. (98), because these are coordi-
nate axes rotations, not the physical system rotations
seen commonly in quantum mechanics, where the order
of group operation application is from right to left. Us-
ing the homomorphism property for the group represen-
tations gives
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+¢
DO (8,60 =Y

m''=—¢

DY (0,00, X0)

xD, . (61,61, x1), (99)

where the D®) are the irreducible representation matrices
of R(3). Using the relationships

D,(f.zn' (6,0,x) = e—im¢d$:)vn' (a)e—imlx,
dimrns (6) = dirns (6), (100)
Dfﬂ;(fi’, 0, X) = Dfﬁ;(‘b, 0, 0),
and
20+1 .

we can specialize Eq. (99) to the case m' = 0, take its
complex conjugate, and arrive at the equation

Yem(6,8) = 3 DY), (60,80, X0)Yemn (61, 1)-

m'!

For the EVDF this gives the needed expansion
f(0,6,0) = Y fem(v)DY. (80,80, X0) Yem (6161),

(101)

tmm'!
(102)
and the insertion of this into Eq. (59) gives
1 ) 2x
Be)= o [T de [T ah T im0
e o tmm'’

* - €*
XDSZ",,((ﬁo,oo,X())thmu (COS 1 V ?,qbl) .

(103)
We can simplify this by doing the ¢; integral first:

2n *
JE (cos—1 ,/i,m)
0 €
20+ 1 [e*
=27 an P[ ( —e—) 6.,"",0. (104)

Then we do the sum over m"” and use Eq. (100) again to
obtain the general result for the projected EVDF

HE) = 25 Yin(Ooi ) [ fem(e)P (\/i ) de,
tm €x

(105)

which is directly proportional to the first derivative of
the one-sided probe I-V data at the orientation defined
by the angles (6o, ¢o) according to Eq. (5). Notice that
the arbitrary angle xo disappeared in the last step. Dif-
ferentiating Eq. (105) once with respect to V, = —¢*/e
gives for the second derivative

3
Age

m2

d?1
d—sz(oo,tﬁo) =27 ; Yem (0o, b0)Fem(€®),  (106)

2233

where

Fim(€*) = fem(€®) — /£°° ftm(f)% Py (\/E;) de.

(107)

The determination of the EVDF now proceeds along the
same lines as in the axisymmetric case. Some set of (¢m)
are chosen for which the f,,, functions are to be deter-
mined. Second derivative data are obtained at an appro-
priate number of well chosen orientations (6o, ¢o). The
matrix of coefficients in the system of linear equations
[Eq. (106)], which depends on the (complex) spherical
harmonic functions, is inverted, and the inverse applied
to the column vector of second derivatives to find the
selected Fy,, functions. Then the Volterra integral equa-
tions of the second kind [Eq. (107)] are solved to find the
corresponding coefficient functions in the EVDF [ fo,, (v)].
The Volterra integral equations are identical to (have the
same kernel and limits as) those arising in the axisym-
metric case already treated, and all the discussion of the
general solution still applies. Similarly a first derivative
oriented method can be based on Eq. (105) by defining
(and solving linear equations for)

Un(e) = 2 [ fem(@P: (\ﬁ ) de

Qem(vn) = /:o v fom(v) Py (”7") dv

or
(108)
and

2
,’1‘%("0’4’0) = ZWAP% > Yem(60,40) Qem(vn).  (109)
tm

Equation (108) leads to exactly the same Volterra inte-
gral equations of the first kind already discussed. (Again
both the kernel and the resolvent are independent of m.)
These equations should (and do) reduce to those of the
preceding section in the special case of an axisymmetric
plasma, in which the terms in Eq. (96) for m # 0 van-
ish. The coefficient fg,(v) must be normalized slightly
differently from f,(v) as follows:

F(©,0) =Y fro(v)Yeo(6, )

£=0

= Z feo(v) ‘/ 254: 1 Py(cosb), (110)
]
5u@) = | 52 fo(o),
(111)

Fy(v) = \/2‘4: ! Fro(v),

and
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Qelon) = {2 Quo(on):

In practice it may be convenient to expand the EVDF in
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Equating the sums of the two terms with fixed ¢ and |m|
in the two series establishes the relationships (m > 0)

a sine/cosine series and avoid all use of complex numbers: = (=1)™ (26+1) (£=m)!

oo 14
f(v,0,0) = Z[ fe(€)Pe(cos8) + Y P;*(cosb) (114)
=0 m=1
. n [ 1)(E—m)!
x{glm(e) cos m + her(€) smm¢H - el =D ey 2l )
(112)
Clearly the real functions gs,, and hy,, and the complex
Because f is a real function and Y (6,4) = set fyn are instantly obtainable from each other. Because
fm\Y -

the kernel is real, there is no mixing of the real and imag-
inary parts of fg, in the definition of F, [Eq. (107)].
Thus we can define Gy,, from gy, and Hy,, from hg,,
in exact analogy to the latter equation. For the second
derivative of the I-V curve we get

(=1)™Yz,—m (6, ¢), the coeflicients in the spherical har-
monic expansion are constrained by

ftm(€) = (=1)™ fe,-m(e)- (113)

|

ol (115)
2 2
de m? =~

m=1

2 3 oo 4
L _ 27rApe Z [Ft(e")Pt(coseo) + Z P (cos0g) {Gem(€™) cosmepg + Hpm (€") sinmepo }

The Volterra integral equations for gs,, and hgmn and their resolvents are the same as those for f; given in the preceding
section. If Eq. (115) is taken as the set of linear equations to be solved, then the coefficient matrix and its inverse are
real. A completely real formulation can also be made of the first derivative approach based on the H(v,). Instead of
Q¢m(vn) we would define

Remn(vn) = /;covggm(v) P, (%") dv

and
oo Un
Sem (vn) = /v v hem(v) Py (7) dv, (116)
and for the first derivative we would get
dI Aje? & d
i 2m ;L ; [Ql(vn)Pl(cos fo) + 2::1 P (c0s 8;) { Rem (vn) cos mg + Sem (vn) sin meo } (117)

For calculating the net convective flow of the electrons (¢') it is convenient to show the £ = 0 and £ = 1 terms of the
EVDF explicitly:

f(v,6,9) = fo(v) + f1(v) cos b + g11(v) sinf cos ¢ + hq1(v)sinf sing + --- . (118)
Using the usual orthogonality ideas yields
() = ((vsinfcos ¢, vsinfsin¢, vcosh))
_ Arm ® 3 ® 3 ® 3
= v gn(v)dv, v hn(v)dv, v fl(‘l))d’l) . (119)
3n. 0 0 0
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B. Two-sided planar probe

Adding the contributions from both sides of the probe
gives

d21 e3
d_VI? = 21|'Ap;n—2-
x Z ch(eo, ¢0) + Ytr2n(7r - 00a ¢0 + 7r) Flm(et)y
tm
(120)
and using the symmetry property
Yem (7 — 80,6 + 7) = (—1)*Yem (6, 9) (121)
gives
3 oo +25
de (007 ¢0) 2 Z Z Y'Zj,m(oo, ¢0)
3=0 m=-23
XFajm(€%). (122)

We see that only even £’s contribute to the second deriva-
tive, but both even and odd m’s do. If we calculate the
electron density by integrating the second derivative ac-
cording to the familiar algorithm for isotropic plasmas,
we will obtain

nca.lc — 111‘/3 ZYz'm(00a¢0) /oo Fz_m(e.)eu/z de*.
e m m p ¥B o Js

(123)

By exactly the same argument used in the axisymmetric
case (Sec. IIIB) the integral in this equation vanishes
unless j = 0. Using Foo = foo, Yoo = (4m)~ /2, and
(from the orthogonality of the spherical harmonics)

Fool€®) = / Yo f(e*,6,4) d0 (124)
allows Eq. (123) to be simplified to
o o}
n?k=/.v2/fhg&¢ﬂﬂﬂ)
1]
= ﬁ ctocity | = nire, (125)
space

This constitutes a second proof of our statement in
Sec. IIB that a two-sided planar probe always yields
the correct density at any orientation in an arbitrarily
anisotropic plasma.

C. Cylindrical probes

As in the case of a planar probe we choose three Carte-
sian coordinate systems in velocity space: (I) (X,Y,Z)
fixed in the plasma vessel, (II) (z,,2) as in Sec. IIIC
with z axis parallel to probe axis and = pointing radially
outward at a surface element on the sheath boundary,
and (III) (z',y’, 2') with 2’ parallel to the electron veloc-
ity vector and z’,y’ chosen in any way. The rotations
between these are as follows:

2235
R(,6,x) : (I)— (III),
R(¢,0,x) : (II) — (III), (126)
R(®,),4): (1) - (I1).
The multiplication laws are
R($,0,x) = R(2,), $)R(¢,6,x),
(127)

Dfrtl.‘)m’(¢’0 X) EDmm" (‘b A ¢)Dm“m' (¢’0 X)

and specializing to m' = 0 and using Eq. (100) the latter
becomes

Yem(ﬁ, (5) = ZDSZ;”(Q”\’(;)},""“ (03 ¢) (128)

m'!

More specifically (6, ¢) are the spherical coordinate an-
gles of the electron velocity vector in the axis system at
a surface element on the sheath boundary, (6, $) are the
spherical angles of the velocity vector in the vessel-fixed
system used to express the EVDF, and (), ®) are the
spherical angles of the probe axis (and 2z axis) in that
same system [Fig. 3(a)]. The angle  is the angle around
the probe axis to the surface element, measured from the
projection of the plasma Z axis plus 7 radians [Fig. 3(b)].
The EVDF becomes

f(v,é,q_ﬁ) = Z flm(v)ng"(Q7 ’\’ &)th"(ev ¢)7

£Lmm'’!

(129)

and it is this expression that should be inserted into
Eq. (76) in place of f(v,8) in order to represent the col-
lected current. The ¢ integral is done first in the resulting
expression. Using Eq. (100) we find

/2 d¢ZD£2n,, @ A,(Z)),tm”(gyd’)

= 2Yyn (A, @) Py(cos ). (130)

Substituting (130) into the expression for collected cur-
rent and doing the ¢ integral explicitly [as in going from
Eq. (77) to Eq. (78)] we obtain a result that can be cast
into the form of Eq. (80) if we define

oo +25
feven(v1 0) = Z Z fzj,m(v)}fzj,m(/\, Q)PZ.’I' (COS 0)
=0 m=-2j

(131)

The steps from Eq. (80) to Eq. (84) are exactly the same
as before, and inserting the definition in Eq. (131) into
Eq. (84) yields

d?1 - 9 Ap€3
dv2

Z Y25,m (X, @) [fzj,m(e‘)sz (0)

* f 1,m(€)

e male

(y)ydy & } (132)

va?—y?
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Using Eq. (86) on this gives the final result

3 (o) +23
dV2 (’\ ®) = 2m Z Y. Frim
7=0 m=-23

XYzjym()\,Q)ng(O), (133)

where F3jm(€*) is obtained by putting £ = 2j into
Eq. (107). This is very similar to the result for a two-
sided planar probe [Eq. (122)], from which it differs only

plasma axis

(a) Z )

probe axis

projection of plasma axis
[

(b)

Ry

FIG. 3. (a) The Euler angles for the rotation R(®, ), $)
are illustrated in perspective view. We first rotate by &
around Z (plasma axis) to bring X to X' in the probe-axis—
plasma-axis plane and Y’ perpendicular to it. Then we rotate
about Y’ by A to bring Z to z (the probe axis) and X' to X"/,
which is in the probe-axis—plasma-axis plane and perpendic-
ular to the probe axis. Finally we rotate by ¢ around z to
bring X" to x, which points radially outward from the local
surface element. (b) The view looking down the probe axis
from the +2 direction.
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by the presence of the extra factor of P»;(0) and the sub-
stitution of A\, ® for 6y, . Since only even values of ¢
contribute to the second derivative, the same argument
given in Sec. IV B shows that the electron density ob-
tained by integrating the second derivative is the true
one, providing a second proof of our assertion (from Sec.
IT1C) that this method gives the exact result for any orien-
tation of a cylindrical probe in an arbitrarily anisotropic
plasma.

For an axisymmetric plasma Eq. (133) becomes
Eq. (93) as it should, again using the renormalization
in Eq. (111). A version of Eq. (133) involving only real
numbers can also be written. It will look like Eq. (115)
with £ — 27,00, 40 — A, ®, and an extra factor of P,;(0)
in each term. Using either that real equation or Eq. (133)
itself, any chosen number of coefficients in the expansion
of the EVDF (with even £ values) can be obtained from
cylindrical probe I-V second derivative data at the same
number of well chosen probe orientations by multiply-
ing the column vector of I” functions by the inverse of
the coefficient matrix of the linear equations. Then the
Volterra integral equation must be inverted by numerical
integration.

D. Spherical probe

Let (v, 6, ¢) be the spherical coordinates of the electron
velocity vector in a system located at an infinitesimal sur-
face element on the spherical sheath boundary, with the
polar axis pointing radially outward from the probe cen-
ter. Let (A, ®) be the spherical angles of that surface
element in the vessel-fixed coordinate system and (6, $)
those of the velocity vector in the latter system. Then
Eq. (129) still applies, with ¢ being arbitrary. The or-
bital motion is treated by conserving energy and angular
momentum, leading to the following expression for the
contribution of the surface element to the collected cur-
rent:

2m ™
dl = ——dAe/ dd)/ S ’Uzd'U/ sin(0)dé
-

xvcos(8) f(v,0, ), (134)
where
2eV,
6" =sin! 2 < 3 (135)
Ts muv

Combining Eq. (129) and (134) gives the expression for
the total probe current:

27 . o
I=— [ / dd / sin(A) d,\D,(,?m,,(@,A,@J

tmm"

03 fom (v) dv / sin(6) cos(6) d@

e
x A Y (6,6)- (136)

Using Eq. (104) with cos™! 1/e*/e replaced by 6 and ¢,
by @, followed by summing over m” forces m” — 0, and
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using Eq. (100) we get a factor of

27 L
/ o / sin(A)dA Yem(A, 8) = Va7 Se.00mo.  (137)
0 0
Doing the sums over £ and m gives

I=—Varer?2n v® foo (v) dv

o

><‘/1r sin(#) cos(0)d#,

(138)
after which the 6 integral can be done explicitly, yielding
Ap * 3 2¢Vy

\/Z; W'u foo('U) (1 + mu2 dv.

Differentiating twice and recalling that foo = V47 fo
gives

I _ 2w Ayed —2eV,

A% T m? fo m )
Thus the second derivative method gives only the
isotropic term in the anisotropic EVDF, and of course

in view of Eq. (70) integration of this will give the exact
electron density.

I =me

(139)

(140)

V. DISCUSSION

While it is straightforward to design a probe assem-
bly that permits rotation around a single axis, arranging
for the probe orientation to cover 8g,¢¢ or A, ® space
in a balanced way presents a challenging mechanical de-
sign problem. Careful control and measurement of probe
position and angle are clearly crucial to achieving accu-
racy in the inversion of the systems of linear equations
and in obtaining the EVDF. Using more than one probe
holder to make measurements at one position may solve
the coverage problem, but must be done carefully to avoid
introducing angle or position errors.

The numerical implementation of the method in the
last section will no doubt be best handled by a general
computer program. Depending on the expected or ob-
served extent of anisotropy and the number of probe ori-
entations that can be achieved, and also on the type of
probe, there are a great many possibilities for how many
terms and which terms one may wish to keep in the ex-
pansion of the EVDF. One should be able to enter a list
of chosen £, m and another of the sets 0y, ¢ or A\, ® em-
ployed, with the computer using this information to set
up and invert the coefficient matrix on an ad hoc ba-
sis. If the number of angle combinations exactly equals
the number of terms desired in the expansion, then the
linear equations are solved directly. A program, how-
ever, should also have the flexibility to use more orienta-
tions or multiple data sets at given orientations and to
find the best solutions for the Fj,, functions (or similar
equivalent ones) by using a linear least squares proce-
dure. This would achieve improvements in accuracy, and
the well known statistical methods could estimate errors

2237

and correlations and determine how suitable the given
set of measurement angles is for the chosen list of £,m
pairs. It should be possible in principle to combine data
from more than one probe type in such an analysis, but
one would need to proceed cautiously in order to avoid
introducing systematic errors, e.g., from different degrees
of plasma perturbation by different probe holders. Nu-
merical differentiation of probe trace data and numerical
integration to solve the Volterra equations and to find
electron densities would easily be incorporated into the
same analysis program. Reference [11] contains pertinent
discussion of possible numerical methods and possible er-
rors. The most troublesome numerical problems come
from the singularities in the Volterra integral equations
at the plasma potential. Near the latter the errors in
the coefficients of the EVDF increase. The axisymmetric
case would be handled by the same program by just omit-
ting the use of any m # 0 coefficients. In an anisotropic
plasma the floating potential, which is defined to some
extent by the surface used to measure it, is expected to
depend strongly on the orientation of the probe. Experi-
mentally variations of 5 V or more can be observed even
when only a moderate level of anisotropy is present. The
plasma potential, however, should be a scalar quantity,
independent of the method used to measure it. Whether
the zero crossing of the I-V second derivative occurs at
exactly V, in all probe orientations is another question.
Experimentally we have found the zero crossing to be
quite stable towards probe rotation when the anisotropy
is not too great, but the theoretical situation at higher
levels of anisotropy in the general case needs further in-
vestigation. Some discussion of this problem is found in
Ref. [15].

Often it may be convenient or necessary to rotate the
coordinate axes for expressing the EVDF. In the diverg-
ing downstream region of an electron cyclotron resonance
(ECR) or other high density processing reactors with
cylindrical spatial symmetry there will normally be sym-
metrically equivalent off-axis points (common radial and
axial coordinates) with a completely anisotropic EVDF
at each one. In measurements the same coordinate sys-
tem would typically be used at all points, e.g., Z cho-
sen parallel to the chamber axis and X axis pointing
north. The fg,(v) functions at different azimuthal po-
sitions would then be very different, even though the
EVDF’s are symmetrically equivalent. We can easily ro-
tate from one coordinate axis system (X,Y, Z) to another
(X',Y',Z’) with a transformation R(a,(3,v) that leads
to analogs of Egs. (101) or (128) for the spherical har-
monic functions. For the coefficient functions then the
transformation law is

Fems (v) = D fem (v) Dl (@, B,), (141)
m

where a, 3, are the Euler angles of the coordinate axis

rotation from (X,Y, Z) to (X',Y’, Z").

We have recently described [20] a workstation based
Langmuir probe system that obtains EVDF’s by numer-
ical differentiation of probe I-V curves. In the present
context such a scheme has an advantage in comparison
to analog differentiation methods in that one can choose
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to do a first derivative based analysis, or a second deriva-
tive based one, or both, after the data collection is com-
plete. We have used this system to carry out a study of
the accuracy of various probe analysis methods, includ-
ing the integration of the EVDF, for on-axis measure-
ments with an aligned cylindrical probe in dc discharges
in nitrogen and in helium [21]. Section II of this paper
shows that the anisotropy expected to exist, especially
in the positive column of the discharge, will not intro-
duce any errors into the plasma densities obtained by
integrating the EVDF. A separate paper [22] presents
a detailed mapping of plasma parameters and EVDF’s
obtained by the on-axis cylindrical probe in these same
discharges. The distribution functions, obtained as if the
plasma were isotropic, show complex patterns in the dou-
ble layer region at the boundary between the Faraday
dark space and the positive column and throughout the
striated positive column. The analysis in Sec. II shows
the EVDF’s we found in those experiments are the func-
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tions f(€) and in fact describe only the distribution of
velocities transverse to the discharge tube axis; know-
ing them is equivalent to knowing G(v,). Recent work
in this group [23] has used a one-sided planar probe in
several orientations to study the EVDF’s at many spatial
points in a multidipole magnetic confined plasma, excited
at 13.6 MHz by an inductively coupled planar spiral an-
tenna [multidipole rf induction (MRFI) plasma). In the
source region azimuthal rf electron currents are induced
by the rf magnetic fields, so in general there is no reason
to expect that the EVDF is axisymmetric, even though
the vacuum chamber is very close to being perfectly cylin-
drically symmetrical.
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FIG. 1. The azimuthal angles are seen looking down the
axis of the cylindrical probe, when the latter is also taken as
the polar axis of the vessel-fixed cylindrical coordinate system
for expressing the EVDF. The velocity vector is not generally
in the plane of the paper; the angles shown are those to its
projection in that plane.
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FIG. 3. (a) The Euler angles for the rotation R(Q, A, q-ﬁ)
are illustrated in perspective view. We first rotate by @
around Z (plasma axis) to bring X to X' in the probe-axis—
plasma-axis plane and Y’ perpendicular to it. Then we rotate
about Y’ by A to bring Z to z (the probe axis) and X' to X",
which is in the probe-axis—plasma-axis plane and perpendic-
ular to the probe axis. Finally we rotate by ¢ around z to
bring X" to z, which points radially outward from the local
surface element. (b) The view looking down the probe axis
from the +z direction.



